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1 Abstract

The Pfizer COVID-19 vaccine was issued with fewer tests than normal due to circumstances

deemed worthy by the Federal Drug Administration to send out Emergency Use Authorization.

Although fewer tests are needed in this process, it is still important to ensure safety and efficacy

of the vaccine. This analysis replicates a former study by Polack et al. investigating vaccine

efficacy using Bayesian inference and Frequentist statistical methods. We found that the Pfizer

vaccine efficacy was approximately 95% in both methods, which is much higher than the required

30% FDA rate. Using different assumptions in Bayesian modeling, we say that even in the most

pessimistic circumstances the vaccine showed to be consistently exceeding FDA expectations. This

re-analysis demonstrates that even during Emergency Use Authorization roll-out, the vaccine was

statistically effective, rendering it to be a crucial portion of the COVID-19 relief effort.
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3 Introduction

COVID-19 is a disease that comes from the SARS-CoV-2 virus, first emerging in late 2019. The

first cases originated in Wuhan, China, and quickly spread worldwide, eventually leading the World

Health Organization to classify it as a global pandemic (Hao et al., 2020). The zoonotic property

of COVID-19 (infection comes from contact with other people) and the world’s slow adaptation

to it propelled its initial rapid spread. Countries began to go on lockdown starting with China

in January of 2020. This was followed by most other countries declaring lockdown or restriction

on social interaction (Koh, 2020). Non-essential businesses were closed, and most operations were

moved online, affecting the economic and social lives of most people across the world. Many

countries implemented mask mandates and social distancing measures to contain the COVID-19

outbreak - we still see the effects of this today, as the use of masks has now become standard

practice in countries where it was not before the pandemic. International travel, mask mandate

violations, and social distancing violations contributed to the spread of COVID-19 and its variants,

such as Delta and Omicron.

Although short-term solutions such as social distancing and mask mandates helped contain

COVID-19’s spread, the long-term solution of vaccines helped the most in allowing life to return

to how it was prior to the pandemic. Globally, vaccine roll-out began in early 2021, although the

United States Federal Drug Administration gave the Pfizer and Moderna mRNA vaccine emergency

approval in December 2020 for use by essential workers (Chirico, Teixeira da Silva, Tsigaris &

Sharun, 2020). Due to the brevity of the situation, these vaccines were approved with less testing

than is typically required to ensure that a vaccine is safe and effective. One of the studies conducted

to gain emergency authorization was the Polack et al. study, a crucial component of the COVID

recovery effort.

We analyzed the data from the Polack et al. (2020) study related to the BNT162b2 vaccine dis-

tributed by Pfizer and BioNTech- commonly referred to as the Pfizer vaccine. Pfizer and BioNTech

successfully received a US FDA Emergency Use Authorization to begin distributing the two-dose
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vaccine. In lieu of the shelter-in-place and amount of deaths caused by COVID-19, the FDA decided

to forgo the typical testing process in favor of quickly finding and distributing cures to COVID-19.

The researchers found an efficacy rate of the vaccine to be 95 percent and were more than 99.99

percent confident the true vaccine efficacy rate was greater than the FDA criterion of 30 percent

efficacy. We want to test the efficacy of the BNT162b2 COVID-19 vaccine for ourselves in order to

confirm the safety and success rate of distribution. Testing is important for determining the safety

of medical tools, and review of statistical methods used to determine safety is crucial for improving

future testing. Follow-up study replication helps to improve future testing methods and ensure the

safety of more people. We want to replicate and assess the efficacy rate of the vaccine and test it

against the FDA criterion.

Figure 1: Percentages of data showing split between placebo and vaccine group, and participants
who contracted COVID-19.

Figure 2: Bar graph of COVID cases grouped by treatment type.

We see in Fig. 1 that in the Polack data, 0.05 percent of people with the vaccine contracted

COVID-19 and 0.92 percent of people with the placebo contracted COVID-19. In Fig. 2, we can

see the clear split in Covid cases between the two groups that will be analyzed. Based on these

initial visualizations, we can see that there is quite a large difference between the Covid cases in the
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vaccine and in the placebo group. Therefore, we expect to see a high vaccine efficacy rate similar to

the study, meaning that the vaccine will be safe to distribute for use at a much higher margin than

the FDA criterion. We assume our results may differ slightly due to our use of Bayesian statistics,

but should follow the same trend as the Polack paper.

4 Statistical Methods

The data we analyzed came from a double-blind, placebo-controlled, efficacy study. 43,448

participants were randomly assigned to receive either the BNT162b2 vaccine or a placebo. The

study stopped once 170 people were infected with COVID-19. Among those vaccinated, 8 infections

were reported, while 162 infections occurred in the placebo group. Our analysis estimates the rate

parameter of SARS-CoV-2 infections among individuals inoculated with Pfizer’s BNT162b2 and, by

extension, evaluates vaccine efficacy using Frequentist and Bayesian approaches. We used a single

binomial model to estimate the vaccine efficacy, our parameter of interest. X was the random

variable defined as the number of vaccinated individuals infected with COVID-19 out of the 170

infected cases. We assumed X ∼ Binom(170, π) where π = P (V accinated|Infected). This model

is held under the following assumptions: a fixed number of trials (n = 170), a constant rate

parameter, independent trials, and binary infection outcomes (infected or not infected). We know

ψ = 1−2π
1−π where ∞ < ψ < 1. We used ψ to solve for π such that π = ψ−1

ψ−2 . ψ is our parameter

of interest because the FDA requires that the vaccine efficacy is greater than 30%, this is what we

will be testing. Therefore, the null hypothesis is H0 : ψ = 0.3 and the alternative hypothesis is

H1 : ψ ≥ 0.3.

4.1 Likelihood Inference

4.1.1 Maximizing ψ

To find the maximum likelihood vaccine efficacy rate ψmle0 , we took the likelihood function of the

binomial rate parameter π̂mle0 for a binomial random variable X ∼ Binom(n, π̂mle0 ) which follows

L(π) =

(
n

x

)
(π)x(1− π)n−x
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where n denotes the sample size and x is an instance of the random variable X. We are interested in

finding the likelihood estimator for ψ, the vaccine efficacy, so we used the transformation π = ψ−1
ψ−2

and obtained

L(ψ) =

(
n

x

)
(
1− ψ

2− ψ
)x(

1

2− ψ
)n−x

Taking the natural log of our likelihood function, we obtained

ℓ(ψ) = ln

(
n

x

)
+ xln(1− ψ)− xln(2− ψ) + (n− x)ln(1)− (n− x)ln(2− ψ)

To maximize the function ℓ(ψ), we took the first derivative with respect to ψ and obtained,

dℓ(ψ)

dψ
=

−x
1− ψ

+
n

2− ψ

Setting the derivative equal to zero and solving, we obtain the formula that maximizes ψ, such

that,

ψ̂mle0 =
n− 2x

n− x

We checked the second derivative and found it to be negative proving that ψ̂mle0 is a maximum

estimation (Appendix Likelihood Estimation).

4.1.2 Confidence Interval Estimation of ψ

We applied two methods to compute the confidence interval estimate of ψ: a large sample Wald

confidence interval and a parametric bootstrap.

To construct the large-sample confidence interval for ψ, we applied the generalized central limit

theorem, which states that for large n, ψ̂mle0 ≈ Norm(ψ0,
√

1
nI(ψ)) where the Fisher Information

is I(ψ) = E[− d2

dψ2 ℓψ(X)]. To calculate the Fisher Information, we took the negative of the second

derivative of ℓ(ψ) which we computed −d2ℓ(ψ)
dψ2 = X

(1−ψ)2 − n
(2−ψ)2 . Since X follows a binomial

distribution, its expected value is E[X] = nπ. However, to express the Fisher information in terms

of ψ, we apply the transformation π = 1−ψ
2−ψ and substitute the transformed maximum likelihood

estimator, π̂mle0 into our expectation. Using this substitution and the linearity of expectation we

5



obtained

I(ψ) =
n

(1− ψ)(2− ψ)
− n

(2− ψ)2

The large sample, (1− α) Wald confidence interval of ψ0 will therefore be

ψmle0 ± zα
2

√
1

nI(ψ)

In our second method to calculate the confidence interval of ψ, we performed 1, 000 iterations

of the bootstrap resampling to estimate the distribution of ψ.

4.1.3 P-value Calculations

We also applied two different methods to calculate the p-value for our test: a chi-square distribution-

based approach and an empirical p-value method.

To calculate the value using a chi squared distribution, we used the null and alterative hypothesis

H0 : ψ = 0.3 and H1 : ψ ≥ 0.3 and calculated the likelihood ratio Λ =
L(ψ̂mle

0 )

L(ψnull
0 )

as our test statistic.

We then applied the transformationW = 2ln(Λ). We applied this transformation so thatW ∼ X2
1 .

With this transformation, we calculated P (W > W ∗) where W ∗ is our test statistic under the

transformation to obtain our p-value.

We also performed an nonparametric empirical p-value calculation

p̂ =

∑B
i=1 1(W

∗ > Wobs)

B

using 150, 000 resampling repetitions.

4.2 Bayesian Inference

For the Bayesian method, prior assumptions were made and used with the results of the study

to update our assumptions. Our beta prior is Xπ ∼ Binom(n, π) g(π) = Beta(a, b) and the beta

model is f(X|π) ≈ Binomial(n, π). The posterior is h(π|x) = Beta(a+x, n−x+b). Our significant

parameter of interest is ψ = 1−2π
1−π .

We tested all prior assumptions against the FDA guideline that the efficacy must be greater
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than 0.3 for the vaccine to be deemed effective.

P (ψ ≥ 0.3) = P (
1− 2π

1− π
≥ 0.3) = P (π ≤ 7

17
)

P (ψ ≥ 0) = P (
1− 2π

1− π
≥ 0) = P (π ≤ 1

2
)

For the optimistic and pessimistic priors, we set different apriori beliefs to be equal to P (π ≤ 1
2)

and P (π ≤ 7
17). We found the a and b for π where the percentiles chosen from the apriori beliefs

are 1
2 and 7

17 . Replicating the Pfizer results, we already knew the a and b values and used the prior

given to find the apriori beliefs.

Then, we found the posterior median for π, and converted it to ψ. We found the posterior

intervals at the 95% level, at the 0.025 and 0.975 tails of the beta posterior distribution. We then

found the posterior interval for π and converted it to ψ using ψ = 1−2π
1−π . Finally, we tested against

the null hypothesis.

5 Results

Our main goal is to determine whether the efficacy of our vaccine is above the FDA guideline of

30%. Taking the data we know from the sample, we first found the sample estimate of the relative

risk R̂R and vaccine efficacy. We found π̂BNT = 8
17,411 = 0.000459 which is the proportion of Covid

cases in the vaccinated group and π̂p =
162

17,511 = 0.00925 which is the proportion of Covid cases in

the placebo group.

Using these values, we found the relative risk R̂R of the vaccine trials.

R̂R =
π̂BNT
π̂p

=
0.000459

0.00925
= 0.04967

Using the relative risk, we can calculate vaccine efficacy.

1− π̂BNT
π̂p

= 1− 0.04966 = 0.9514

The vaccine efficacy calculated for the sample is approximately 95%, which is much higher than

the FDA requirement of 30%.
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Analysis Results

Method Vaccine

Efficacy

Estimate

P-Value 95% Confidence

Interval

Frequentist ψ = 0.9506 2.8222× 10−28

-(X2 test),

0-(empirical)

[0.9479, 0.9533] (Wald),

[0.9103, 0.9820]

(bootstrap)

Bayesian ψ = 0.7523

ψ = 0.9184

ψ = 0.9486

Pessimistic:

1.931788× 10−13

Optimistic: 0

Pfizer: 0

[0.6661909, 0.8196993]

[0.8644559, 0.9548464]

[0.9035199, 0.9762552]

Table 1. Comparison of Bayesian and Frequentist results.

5.1 Likelihood Inference

Figure 3: Taylor Approximation to Log-likelihood

We evaluated the efficacy of the vaccine using maximum likelihood methods. The estimated vaccine

efficacy was ψ0 = 0.9506, indicating a 95.06% reduction in disease risk among vaccinated individuals

compared to the unvaccinated group.

To assess the statistical significance, we computed two p-values. The chi-square test yielded

a p-value of 2.822210−28, demonstrating extremely strong evidence against the null hypothesis.

Furthermore, an empirical p-value obtained through resampling was 0, further supporting the
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evidence against the null hypothesis.

Confidence intervals were calculated using the Wald and bootstrap methods. The Wald 95%

confidence interval was [0.9479, 0.9533], suggesting a highly precise estimate. The bootstrap confi-

dence interval was wider at [0.9103, 0.9820], reflecting the potential variability in the estimate, but

still demonstrating strong vaccine efficacy.

5.2 Bayesian Inference

We investigated what model would be best for the data and making inferences on the vaccine

efficacy. To model this data, we used a single binomial random variable X. To decide on our apriori

beliefs, we first calculated the prior elicitation of a and b using the uniform distribution to see if

the vaccine meets FDA guidelines.

P (ψ ≥ 0.3) = P (
1− 2π

1− π
≥ 0.3) = P (π ≤ 7

17
)

5.2.1 Pessimistic Prior

A pessimistic set of beliefs for a prior is a good starting point, as if our vaccine efficacy still comes out

looking good, then we have even more reason to believe that it is high above the FDA regulations.

For our first prior, we selected the following beliefs:

P (ψ ≥ 0.3) = 0.05 and P (ψ ≥ 0) = 0.5

These beliefs look as follows when written in terms of π:

P (π ≤ 7
17) = 0.05 and P (π ≤ 1

2) = 0.5

Using these beliefs, we found a and b to both be 43.03. This means our prior is Beta(43.03, 43.03)

and our posterior is Beta(43.04+8, 170-8+43.03).
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Figure 4: Pessimistic beta prior and posterior distribution plot

The posterior median for π is approximately 0.1985. We transformed the median into ψ

which became 0.7523. We then calculated the confidence interval and are 95% sure ψ is between

[0.6661909, 0.8196993]. Finally, we found the p-value for the probability of seeing results as or more

extreme than ours when the null hypothesis H0 : ψ = 0.3 is true to be 1.931788e-13, indicating a

significant result.

5.2.2 Optimistic Prior

We wanted to test a more optimistic assumption compared to the pessimistic one, so we selected

the following beliefs:

P (ψ ≥ 0.3) = P (π ≤ 7
17) = 0.5 and P (ψ ≥ 0) = P (π ≤ 1

2) = 0.75

Using these beliefs, we found a = 6.24 and b = 8.77, making our prior Beta(6.24, 8.77) and the

posterior to be Beta(6.24+8, 170-8+8.77).
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Figure 5: Optimistic beta prior and posterior distribution plot

We found the posterior median for π and transformed it to the median into ψ, which was

0.9184. We then calculated the confidence interval obtained the result that we are 95% sure ψ is

between [0.8644559, 0.9548464] based on our selected prior. We found a p-value extremely close to

0, indicating a significant result.

5.2.3 Pfizer Prior

We wanted to replicate the priors and results used in the research paper. We know they used a

prior of Beta(0.700102, 1). Their posterior was Beta(0.700102+8, 170-8+1). We found the values

x and y they used for their prior where P (ψ ≥ 0.3) = x and P (ψ ≥ 0) = y checked that they were

accurate. We found that:

P (ψ ≥ 0.3) = P (π ≤ 7
17) = 0.53729 and P (ψ ≥ 0) = P (π ≤ 1

2) = 0.6155

Figure 6: Phizer beta prior and posterior distribution plot
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We found the posterior median for π and transformed it for the median into ψ, which was 0.9486.

We then calculated the confidence interval and are 95% sure ψ is between [0.9035199, 0.9762552]

based on the prior selected. We found a p-value extremely close to 0, indicating a significant result.

This matched with the results of the study.

6 Discussion

Using maximum likelihood estimation, we found that the estimate of ψ was 0.9506. This is

almost exactly what Pfizer found to be their estimate, only being slightly larger than theirs. This

means that our maximum likelihood estimation procedure is comparable to the results that the

Pfizer study got, and we can conclude that the vaccine is effective and safe for public use with a

high margin above the minimum requirement of 30%. All priors from Bayesian estimation rejected

the Null Hypothesis H0 : ψ = 0.3 because of the very low p values. As we were more pessimistic

in our prior beliefs, we found lower and larger confidence intervals. The Pfizer prior had the

highest confidence interval. We assume that the prior chosen by Pfizer was optimistic because they

wanted to assume the drug would do well. Their chosen values were P (ψ ≥ 0.3) = 0.53729 and

P (ψ ≥ 0) = 0.6155 and are very calculated. They may have wanted a certain result where the

p-value is very close to zero and a confidence interval where the lowest point is above 90, which

ensures the vaccine looks highly efficient. Comparing our optimistic prior to Pfizer’s we see that

the prior they used is more optimistic than ours, resulting in a higher estimate. Even with our

more pessimistic beliefs we still found the vaccine to be effective by FDA standards. By Bayesian

estimation for all three priors we assume that ψ ≥ 0.3 and by the FDA is efficient.

Using likelihood inference, we are able to use straightforward computation based on our observed

data, which gives us an objective view on how the data behaves and what the vaccine efficacy is.

The presence of a relatively large sample size is also an advantage, as it allows us to use Frequentist

methods. The use of Bayesian inference is both a strength and weakness when it comes to statistical

re-evaluation of the presented data. The use of priors allows for flexibility in certainty of testing

and for testing the limits of our data’s significance. However, due to this flexibility, different priors

must be examined to understand the efficacy of the vaccine and how its predicted value fluctuates

with the assumptions that are made. This is computationally intense and takes time to complete.
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Further investigation may be done to include other factors that may be affecting vaccine efficacy.

A prominent issue following the initial Covid outbreak was subsequent outbreaks of different and

stronger strains. An interesting direction would be to compare how vaccine efficacy differs based on

the Covid strain to learn to effectively treat more people. Another point of interest is the duration

of immunity after receiving the approved vaccine. Researchers could investigate how long people

show immunity after receiving not only the Pfizer vaccine, but other vaccines with different efficacy

rates, and comparing them to gain more knowledge on the relationship between vaccinations and

immunity rates. Finally, investigating the long-term effects of this vaccine is important to gain

knowledge on next steps and future prevention. A longitudinal study may be done to investigate

long-term side effects after receiving this vaccine, and well as subsequent booster doses to examine

the long-term effects of those as well.
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8 Appendix

8.1 Code for Intro Plots

8.2 Likelihood Inference Code

8.2.1 ψ MLE and Large Sample Confidence Interval

8.2.2 Likelihood Estimation Second Derivative Test

dℓ(ψ)

dψ
=

x

1− ψ
+

−n
2− ψ

d2ℓ(ψ)

dψ2
=

−x
(1− ψ)2

− n

(2− ψ)2

0 =
−x

(1− ψ)2
− n

(2− ψ)2

−x
(1− ψ)2

=
n

(2− ψ)2
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8.2.3 Bootstrap Confidence Interval

8.2.4 χ2 P-Value
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8.2.5 Empirical P-Value

8.3 Bayes Estimation Code

8.3.1 Pessimistic Prior
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8.3.2 Optimistic Prior

8.3.3 Pfizer Prior
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8.4 Prior and Posterior Distribution Graph Code
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